شكراً لتحميلك هذا الملف من موقع المناهج العمانية

ملخص الوحدة السادسة الكسور

موقع المناهج ← المناهج العمانية ← الصف السابع ← رياضيات ← الفصل الأول ← الملف

تاريخ نشر الملف على موقع المناهج: 17-11-04:22:42 ااسم المدرس: منى المعشني

التواصل الاجتماعي بحسب الصف السابع

روابط مواد الصف السابع على تلغرام

التربية الاسلامية اللغة العربية العربية العربية الانجليزية الرياضيات

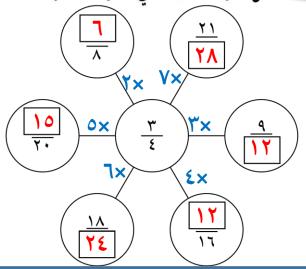
المزيد من الملفات بحسب الصف السابع والمادة رياضيات في الفصل الأول	
ملخص درس العمليات الحسابية	1
ملخص الوحدة الخامسة	2
مذكرة هامة	3
أسئلة الاختبار الرسمي شمال الباطنة مع الحل بخط اليد وفق منهج كامبردج	4
نموذج إجابة اختبار (شمال الشرقية)	5

ملخص الوحدة السادسة الكسور



إعداد فريق رحلة المعرفة

مثال ١: أكمل الفراغات فيما يلي لتكون الكسور متكافئة:



$$\frac{7}{7} = \frac{7}{2}$$

$$0 \times 7 = \frac{2}{3}$$

$$0 \times 7 = \frac{2}{3}$$

إذا قسَّمت البسط والمقام على العامل المشترك الأكبر، فستحصل

على أبسط صورة للكسر في خطوةٍ واحدةٍ.

$$\frac{1}{\Gamma} = \frac{\Lambda \div \Lambda}{\Lambda \div 17}$$

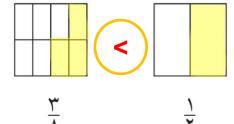
مثال ٢: اكتب كلًّا من الكسور الآتية في أبسطِ صورةٍ:

$$\frac{0}{V} = \frac{V+10}{71} (7) \qquad \frac{0}{7} = \frac{2+7}{7} (-1) \qquad \frac{1}{7} = \frac{9+9}{7} (1)$$

مقارنة الكسور

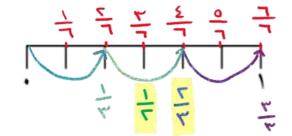
${<}$ مقارنة الكسور من خلال الأشكال ${<}$

ظلل الأجزاء التي تمثل الكسر أسفل كل شكل ثم قارن بينها بوضع علامة (>، <، =):



مقارنة الكسور من خلال خط الأعداد

مثال 7: (1) ضع الكسرين $\frac{1}{4}$ ، $\frac{1}{4}$ في موضعهما الصحيح على خطِّ الأعداد.



(ب) أيُّ منهما الكسر الأكبر؟

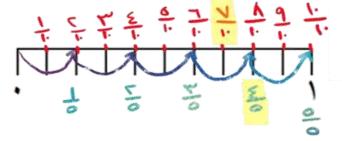
إعداد فريق رحلة المعرفة

مثال ۲:

$_{\scriptscriptstyle >}$ مقارنة الكسور من خلال القسمة $_{\scriptscriptstyle <}$

مقارنة الكسور من خلال خط الأعداد

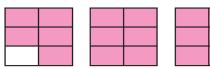
مثال $\frac{1}{2}$: أ) ضع الكسرين $\frac{1}{2}$ ، $\frac{1}{2}$ في موضعهما الصحيح على خطِّ الأعداد.



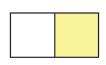
(ب) أيُّ منهما الكسر الأكبر؟

مثال 1:

اكتب الكسور المظللة في كل شكل من الأشكال التالية في صورة عدد كسري وكسر غير اعتيادي:



$$\frac{0}{2}$$
 عدد الكسري=



عدد الكسري=
$$\frac{1}{7}$$

الكسر الاعتيادي هو الكسر الذي يكون فيه البسط أصغرَ من المقام. مثال: $\frac{7}{6}$

الكسر غير الاعتيادي هو الكسر الذي يكون فيه البسط أكبر من المقام. مثال: $\frac{3}{4}$

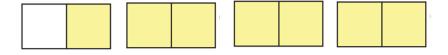
$$\frac{\frac{\nabla}{\gamma}}{\gamma}$$
 کسر غیر اعتیادی=عدد المربعات فی الشکل

اكتب عدد كسري في صورة كسر غير اعتيادي

$$\frac{q}{r} = \frac{1+r\times\xi}{r} = \xi_{\times}^{+}\frac{1}{r} (1)$$

اكتب كسرِ غير اعتيادي في صورة عددٍ كسري

الناتج
$$\frac{V}{\gamma} = \frac{V}{\gamma}$$
 المقسوم عليه الناتج $\frac{V}{\gamma} = \frac{V}{\gamma}$ (أباقي



مثال ۱:

$$\frac{\gamma}{\delta} = \frac{\gamma+1}{\delta} = \frac{\gamma}{\delta} + \frac{1}{\delta} (1)$$

$$\frac{\gamma}{V} = \frac{\gamma - 0}{V} = \frac{\gamma}{V} - \frac{0}{V}$$

جمع الكسور وطرحها

مثال ۳:

أوجد ناتج ما يلي في أبسط صورةٍ ثم اكتبه في صورة عددٍ كسري إن أمكن:

$$\frac{\sqrt{V}}{\sqrt{V}} - \frac{4}{\sqrt{V}} \left(\frac{1}{2}\right)$$

$$\left| \frac{1}{0} \right| = \frac{7}{1}$$

$$\frac{\pi}{\xi} + \frac{\pi}{\xi} (\mathring{1})$$

$$\frac{1}{2} = \frac{\gamma}{\gamma} = \frac{\gamma}{\xi} = \frac{\gamma}{\gamma}$$

عند مقام غير متشابهة نقوم بتحويل المقام الأصغر الى المقام الأكبر وذلك الضرب في العامل إن أمكن

مثال ؛:

أوجد ناتج ما يلي في أبسط صورةٍ ثم اكتبه في صورةِ عددٍ كسري:

$$\frac{1}{2\sqrt{1+\frac{1}{2}}} = \frac{1}{2\sqrt{1+\frac{1}{2}}} = \frac{1}{2\sqrt{1+\frac{1}{2}}} = \frac{1}{2\sqrt{1+\frac{1}{2}}} = \frac{1}{2\sqrt{1+\frac{1}{2}}}$$

$$\frac{\frac{1}{7}}{\frac{1}{7}} = \frac{\frac{1}{7}}{\frac{1}{7}} = \frac{\frac{1}{7}}{\frac{1}{7}} = \frac{\frac{1}{7}}{\frac{1}{7}} = \frac{\frac{1}{7}}{\frac{1}{7}} = \frac{\frac{1}{7}}{\frac{1}{7}} = \frac{\frac{1}{7}}{\frac{1}{7}} = \frac{\frac{1}{7}}{\frac{1}{7}}$$

استخدام الكسور مع الكميات

تُشير كلمةُ «من» إلى علامة «×»؛

أوجد ناتج ما يلي ذهنيًّا:

$$(x) \frac{\xi}{q} \times \lambda 1$$

$$\Lambda = \xi \times \Upsilon = 9 \div 1 \Lambda$$

$$(z)$$
 $\frac{\xi}{\varrho} \times \Lambda$

مثال ۱ : ۱

مثال ۳:

$$(1)$$
 من ۸ ریالاتِ

ریالات
$$\Lambda \times \Lambda = 3$$
 ریالات

تحويل الكسور الى كسور عشرية

يمكنك استخدام الآلة الحاسبة للقيام بذلك.

حول الكسور التالية إلى كسور عشرية منتهية:

$$\cdot$$
, $\forall \Lambda = \frac{1}{2} (1)$

$$\cdot,00=\frac{11}{7}(-)$$

مثال ٤:

٢) أو جد ناتج كل مما يأتي:

ر أ)
$$\frac{7}{V}$$
 من ۱۸۲ ریالًا

$$1 \text{ AT} \times \frac{7}{V}$$

 $(z) \frac{\pi}{\lambda} \times 191$

 $VY = Y \times Y = \Lambda \div 19Y$

حول الكسور التالية إلى كسور عشرية دورية:

$$\frac{q}{\frac{1}{q}} - \frac{1}{1} \cdot , \overline{1} = \frac{1}{q} (-1)$$

$$\frac{q}{\frac{1}{q}} - \frac{1}{1} \cdot , \overline{1} = \frac{1}{q} (-1)$$

$$\frac{q}{\frac{1}{q}} - \frac{1}{1} \cdot , \overline{1} = \frac{1}{q} (-1)$$

$$\frac{q}{\frac{1}{q}} - \frac{1}{q} \cdot , \overline{1} = \frac{1}{q} (-1)$$

استخدم القسمة لتحويل كلِّ من الكسور التالية إلى كسر عشريٍّ، ثم قرب الناتج لأقرب ٣ منازل عشرية:

$$\cdot, \text{TAETIOTA} = \frac{\circ}{17}(1)$$

$$\cdot, \text{TAO} = \frac{\circ}{17}(1)$$

رتب الكسور التالية تصاعديًا بإستخدام الكسور المتكافئة:

$$\frac{9}{1} \times \frac{1}{1} \times \frac{1}$$

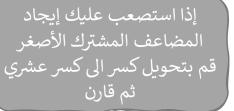
$$\frac{9}{1\xi}$$
 $\frac{V}{1\xi}$ $\frac{\Lambda}{1\xi}$

$$\frac{9}{12}$$
 $\frac{2}{7}$

 $\frac{1}{1} \sum_{v \neq 1}^{v \neq 1} \sum_{r \neq 1}^{r \neq 2} (-1) \left| \sum_{r \neq 1}^{r \neq 1} \sum_{r \neq 1}^{r \neq 2} (-1) \left| \sum_{r \neq 1}^{r \neq 1} \sum_{r \neq 1}^{r \neq 2} (-1) \left| \sum_{r \neq 1}^{r \neq 2} \sum_{r \neq 1}^{r \neq 2} (-1) \left| \sum_{r \neq 1}^{r \neq 2} \sum_{r \neq 1}^{r \neq 2} (-1) \left| \sum_{r \neq 1}^{r \neq 2} \sum_{r \neq 1}^{r \neq 2} (-1) \left| \sum_{r \neq 1}^{r \neq 2} \sum_{r \neq 1}^{r \neq 2} (-1) \left| \sum_{r \neq 1}^{r \neq 2} \sum_{r \neq 1}^{r \neq 2} (-1) \left| \sum_{r \neq 1}^{r \neq 2} \sum_{r \neq 1}^{r \neq 2} (-1) \left| \sum_{r \neq 1}^{r \neq 2} \sum_{r \neq 1}^{r \neq 2} (-1) \left| \sum_{r \neq 1}^{r \neq 2} \sum_{r \neq 1}^{r \neq 2} (-1) \left| \sum_{r \neq 1}^{r \neq 2} \sum_{r \neq 1}^{r \neq 2} (-1) \left| \sum_{r \neq 1}^{r \neq 2} \sum_{r \neq 1}^{r \neq 2} (-1) \left| \sum_{r \neq 1}^{r \neq 2} \sum_{r \neq 1}^{r \neq 2} (-1) \left| \sum_{r \neq 1}^{r \neq 2} \sum_{r \neq 1}^{r \neq 2} (-1) \left| \sum_{r \neq 1}^{r \neq 2} \sum_{r \neq 1}^{r \neq 2} (-1) \left| \sum_{r \neq 1}^{r \neq 2} \sum_{r \neq 1}^{r \neq 2} (-1) \left| \sum_{r \neq 1}^{r \neq 2} \sum_{r \neq 1}^{r \neq 2} (-1) \left| \sum_{r \neq 1}^{r \neq 2} \sum_{r \neq 1}^{r \neq 2} (-1) \left| \sum_{r \neq 1}^{r \neq 2} \sum_{r \neq 1}^{r \neq 2} (-1) \left| \sum_{r \neq 1}^{r \neq 2} \sum_{r \neq 1}^{r \neq 2} (-1) \left| \sum_{r \neq 1}^{r \neq 2} \sum_{r \neq 1}^{r \neq 2} (-1) \left| \sum_{r \neq 1}^{r \neq 2} \sum_{r \neq 1}^{r \neq 2} (-1) \left| \sum_{r \neq 1}^{r \neq 2} \sum_{r \neq 1}^{r \neq 2} (-1) \left| \sum_{r \neq 1}^{r \neq 2} \sum_{r \neq 1}^{r \neq 2} (-1) \left| \sum_{r \neq 1}^{r \neq 2} \sum_{r \neq 1}^{r \neq 2} (-1) \left| \sum_{r \neq 1}^{r \neq 2} \sum_{r \neq 1}^{r \neq 2} (-1) \left| \sum_{r \neq 1}^{r \neq 2} \sum_{r \neq 1}^{r \neq 2} (-1) \left| \sum_{r \neq 1}^{r \neq 2} \sum_{r \neq 1}^{r \neq 2} (-1) \left| \sum_{r \neq 1}^{r \neq 2} \sum_{r \neq 1}^{r \neq 2} (-1) \left| \sum_{r \neq 1}^{r \neq 2} \sum_{r \neq 1}^{r \neq 2} (-1) \left| \sum_{r \neq 1}^{r \neq 2} \sum_{r \neq 1}^{r \neq 2} (-1) \left| \sum_{r \neq 1}^{r \neq 2} \sum_{r \neq 1}^{r \neq 2} (-1) \left| \sum_{r \neq 1}^{r \neq 2} \sum_{r \neq 1}^{r \neq 2} (-1) \left| \sum_{r \neq 1}^{r \neq 2} \sum_{r \neq 1}^{r \neq 2} (-1) \left| \sum_{r \neq 1}^{r \neq 2} \sum_{r \neq 1}^{r \neq 2} (-1) \left| \sum_{r \neq 1}^{r \neq 2} \sum_{r \neq 1}^{r \neq 2} (-1) \left| \sum_{r \neq 1}^{r \neq 2} \sum_{r \neq 1}^{r \neq 2} (-1) \left| \sum_{r \neq 1}^{r \neq 2} \sum_{r \neq 1}^{r \neq 2} (-1) \left| \sum_{r \neq 1}^{r \neq 2} \sum_{r \neq 1}^{r \neq 2} (-1) \left| \sum_{r \neq 1}^{r \neq 2} \sum_{r \neq 1}^{r \neq 2} (-1) \left| \sum_{r \neq 1}^{r \neq 2} \sum_{r \neq 1}^{r \neq 2} (-1) \left| \sum_{r \neq 1}^{r \neq 2} \sum_{r \neq 1}^{r \neq 2} (-1) \left| \sum_{r \neq 1}^{r \neq 2} \sum_{r \neq 1}^{r \neq 2} (-1) \left| \sum_{r \neq 1}^{r \neq 2} \sum_{r \neq 1}^{r \neq 2} (-1) \left| \sum_{r \neq 1}^{r \neq 2} \sum_{r \neq 1}^{r \neq 2} (-1) \left| \sum_{r \neq 1}^{r$

$$\frac{9}{17}$$
 $\frac{1 \cdot }{17}$ $\frac{11}{17}$

عند مقام غير متشابهة نقوم بتحويل المقام الأصغر الى المقام الأكبر وذلك الضرب في العامل الاخر إن أمكن



ترتيب الكسور

رتب الكسور التالية تصاعديًا بإستخدام الكسور المتكافئة:

$$\frac{17}{10} \quad \frac{10}{10} \quad \frac{11}{10} \quad \frac{10}{10} \quad \frac{10$$

رتب الكسور التالية تنازليًّا بإستخدام الكسور المتكافئة:

$$(1)\frac{\xi}{\eta}, \frac{\eta}{1!}, \frac{3}{1!}$$

$$\cdot, \Upsilon \Upsilon \Upsilon = \frac{1}{\pi}$$

$$\cdot, r = \frac{r}{1}$$

$$\cdot, \Upsilon \mathsf{T} \mathsf{E} = \frac{\mathsf{E}}{\mathsf{I} \mathsf{I}}$$

$$\frac{\Psi}{1 \cdot \frac{1}{2}} = \frac{\xi}{1}$$

حساب الباقى

$$\gamma = 11 \div 40$$
 (ب)

$$\gamma \frac{1}{\gamma} = \gamma \frac{\xi}{\Lambda} = \Lambda \div \gamma \cdot (\downarrow)$$

$$\Lambda \frac{\gamma}{\gamma} = \chi$$

$$\frac{\pi}{\pi} = \pi \frac{1}{10} = 10 \div 00 (5)$$

$$\frac{\pi}{\pi} = \pi \frac{7}{9} = \pi \frac{7}{9} = 4 \div \pi\pi (5)$$

$$\frac{\pi}{\pi} = \pi \frac{7}{9} = \pi \frac{7}{9} = 4 \div \pi\pi (5)$$

$$\frac{\pi}{\pi} = \pi \frac{7}{9} = \pi \frac{7}{9} = 4 \div \pi\pi (5)$$

$$\frac{\pi}{\pi} = \pi \frac{7}{9} = \pi \frac{7}{9} = 4 \div \pi\pi (5)$$

$$\frac{\pi}{\pi} = \pi \frac{7}{9} = \pi \frac{7}{9} = 4 \div \pi\pi (5)$$

$$\frac{1}{\gamma} = \frac{\gamma}{\xi} = \xi \div \gamma(\xi)$$

$$\frac{1}{\xi}$$

 $Y = V \div 19(1)$