

إجابات تمارين كتاب النشاط للوحدة الأولى

🔷 تمارين ١-١ الأعداد الموجهة

$$17,7-(1)$$
 (۱) $-7,7$ (ب) $-7,7$ (ج) $(-7,7)$ (۱) (۱

$$7,0-(1)$$
 (۲) $7,7-(1)$ (۲) $7,7-(1)$ (۲) $7,7-(1)$

٣	1,7-	×	(٧
٣,٣-	1,77	١,١-	
١,٥-	٠,٦	٠,٥-	

$$V,V-($$
د $)$ $V,\xi($ أ $)$ $V,\xi($ أ

٩) قيمة أو ب تساوي ٦ و -٦ لذلك أ - ب تساوي ١٢ أو -١٢.

🔷 تمارين ١-٢٪ الجذور التربيعية والجذور التكعيبية

- ۱) (۱) (ب) ۱۲ (ج) ۱۹ (د) ۷
- Y) (†) $P^{\gamma} = 1 \wedge \langle 0 P_{e} \cdot 1^{\gamma} = \cdot \cdot 1 \rangle \langle 0 P_{e} \rangle$ (†) $P^{\gamma} = 1 \wedge 1 \rangle \langle 0 P_{e} \rangle \langle 0 P_$

(ب)
$$3^{7} = 37 < 0$$
 و $0^{7} = 071 > 0$ لذلك $3 < \sqrt[7]{0}$

$$\Lambda > \overline{0 \cdot \cdot \sqrt{r}} > V(\dot{p})$$
 $7 \cdot \sqrt{r} > \sqrt{4}(\dot{p})$ (*)

$$\xi > \overline{00,0} \times 70$$

7)
$$\sqrt[7-7]{7} < 7$$
 لأن $7^7 = 717$ ، $\sqrt{707} > 31$ لأن $31^7 = 791$ ، والعدد 7 أصغر من نصف العدد 31 .

$$V \circ \cdot \cdot < \Lambda \cdot \cdot \cdot = {}^{\mathsf{Y}} \mathsf{Y} \cdot (\mathbf{\psi}) \qquad V \circ \cdot \cdot > 7 \ \xi \cdot \cdot = {}^{\mathsf{Y}} \Lambda \cdot (\mathring{\mathsf{1}}) \quad (V \circ \mathsf{Y} \circ \mathsf{$$

🔷 تمارين ۱-۳٪ الأسس

$$(a_-)$$
 (د) $\frac{1}{\Lambda}$ (د) $\frac{1}{\Lambda}$ (د) $\frac{1}{\Lambda}$ (هـ) ۱

Λ)
$$(1) \frac{1}{7} \frac{1}{10} (7^{-1}) (\frac{0}{77})$$
 (γ)

🔷 تمارين ۱-٤ استخدام الأسس

")
$$\mathring{l} \times \mathring{l}$$
 " \mathring{l} "

1
_(a) $^{-7}$ (c) 7 / 7 / 1

$$\frac{1}{7}(2)$$
 $\frac{1}{9}(2)$ $\frac{1}{9}(2)$ $\frac{1}{9}(2)$ $\frac{1}{9}(2)$ (2)