$$(U \circ 2) = W - Y \sqrt{W + 1} + 1$$

$$(U \circ 2) (W) = U (\sqrt{W + 1} - 1)$$

$$= (\sqrt{W + 1} - 1)^{7} - 1$$

$$= W + 1 - Y \sqrt{W + 1} + 1 - 1$$

$$= W - Y \sqrt{W + 1}$$

فيكون، د(س) = (ل
$$\circ$$
 ي)(س)
الإجابة هي (ل \circ ي)(س)
المجال: س \in ع، س \neq -1،
المدى د(س) \in ع، د(س) \neq -1

تمارین ۲-۳

$$(w) = w^{7} + 7 \text{ } cut w \in 9, w \geqslant 7$$

$$w = w^{7} + 7$$

$$w = w^{7} + 7$$

$$w = w^{7} + 7$$

$$w^{7} = w - 7$$

$$w = \sqrt{w} - 7$$

$$w = \sqrt{w} - 7$$

$$c^{-1}(w) = \sqrt{w} - 7$$

$$c^{-1}(w) = \sqrt{w} + 7$$

$$c^{-1}(w) = \sqrt{w} + 7$$

$$c^{-1}(m) = \sqrt{m - 7}$$

$$c(m) = \sqrt{m - 7}$$

$$c(m) = \frac{m + V}{m + 7}$$

$$cm = \frac{m + V}{m + 7}$$

$$m = \frac{m + V}{m + 7}$$

$$V + \omega = (Y + \omega)w$$

$$V + \omega = \omega + Yw = \omega + Vw$$

$$ww \omega - \omega = V - Yw$$

$$\omega = \frac{V - Yw}{w - 1}$$

$$L^{-1}(uu) = \frac{V + Vuu}{uu - I}$$

1) (1)
$$c: m \mapsto m^7 + 3m, m \in 9, m \geq -7$$
 $c: m \mapsto (m + 7)^7 - 3m$
 $c: m \mapsto (ln + 7)^7 - 3m$
 $c: m$

تتواجد الدالة العكسية د⁻¹ (س) إذا كانت الدالة واحدًا إلى واحد حصرًا.

أكمل المربّع للطرف الأيسر من المعادلة:

$$2 - {}^{\prime}(\Upsilon + \omega) = \omega$$

$$2 + \omega = {}^{\prime}(\Upsilon + \omega)$$

$$2 + \omega = {}^{\prime}(\Upsilon + \omega)$$

$$2 + \omega + {}^{\prime}(\Upsilon + \omega)$$

$$3 + \omega + {}^{\prime}(\Upsilon + \omega)$$

$$4 + \omega + {}^{\prime}(\Upsilon + \omega)$$

$$4 + \omega + {}^{\prime}(\Upsilon + \omega)$$

(خذ الجذر المحطب لأن مجال الدالة العكسية = -3).

$$\frac{0}{1 + \omega + \gamma} \leftarrow 1 \quad \text{i} \quad \text{(*)}$$

$$\frac{0}{1 + \omega + \gamma} = \omega$$

$$\frac{0}{1 + \omega + \gamma} = \omega$$

$$\omega = (1 + \omega + 1) = 0$$

$$\gamma \omega + \omega = 0$$

$$\gamma \omega + \omega = 0 - \omega$$

$$\omega = \frac{0 - \omega}{\gamma \omega}$$

$$c^{-1}(u\omega) - \frac{0-u\omega}{\gamma u\omega}$$

 $\mathbf{v} \leq \mathbf{v} \leq \mathbf{v}$ مجال د $^{-1}(\mathbf{w})$ هو مدی د نفسه، أي س

(a) $a : m \mapsto 7m^{\gamma} - \Lambda m + 10$ $d = m \mapsto 7m^{\gamma} - \Lambda m + 10$ $d = 7(m^{\gamma} - 3m) + 10$ $d = 7(m^{\gamma} - 3m) + 10$ $d = 7(m - 7)^{\gamma} - 7^{\gamma} + 11$ $d = 7(m - 7)^{\gamma} - 7^{\gamma} + 11$ $d = 7(m - 7)^{\gamma} - \Lambda + 11$ $d = 7(m - 7)^{\gamma} + 7 + 7$ d = 7(

 $Y + {}^{Y}(Y - \omega)Y = \gamma$ $W = Y(\omega - Y)^{Y} + Y$ $W = \frac{Y - \omega}{Y}$

هذا المجال.

 $\sqrt{\frac{w-Y}{Y}} = \omega - Y \text{ fixed linear linea$

س ∈ ع، س ≥ ٣ هي دالة واحد إلى واحد في

حيث مجال الدالة العكسية هو س ≥ ٣

$$\frac{Y - \sqrt{W - Y}}{Y} + Y = 0$$

$$\frac{Y - w}{Y} + Y = (w)^{-1}$$

(۱۵ د: $m \mapsto 7m^7 + 71m - 18$ يمكن كتابة الدالة في صورة $m = 7(m - 7)^7 - 77$ منحنى الدالة تربيعي على النحو m = 7

رأس (أدنى نقطة) المنحنى هو (-7، -77) إذا كانت د: $m \mapsto 7m^7 + 71m - 11$ واحدًا إلى واحد فإن د $^{-1}(m)$ يجب أن تكون دالة. لذا

علينا وضع قيود على مجال

د: س $\mapsto 7$ س $\rightarrow + 7$ اس – ۱۵، س $\in \mathcal{G}$ س \geq ك لتصبح:

 $c: w \mapsto Y_{w, \gamma} + Y_{w, w} - Y_{w, \gamma}$ د د ب $w \mapsto Y_{w, \gamma} + Y_{w, \gamma}$ د د ب ر

 $m \ge -7$ ، أقل قيمة لـ ك هي -7 $m \ge -7$ ، أقل قيمة لـ ك هي -7 $m \ge 7$ $m \ge 7$

 $m+7=\sqrt{\frac{m+77}{7}}$ أخذنا الجذر الموجب لأن مجال الدالة العكسيّة س =-77 $\sqrt{\frac{m+77}{7}}$ $-7(m)=m=-7+\sqrt{\frac{m+77}{7}}$

(س - ۳) کمیث $(m - m)^{-1}$ حیث $(m - m)^{-1}$ نعرف ذلك لأن معامل $(m - m)^{-1}$ الرأس $(m - m)^{-1}$ الرأس $(m - m)^{-1}$ الرأس $(m - m)^{-1}$

 $\begin{array}{lll}
\text{constant} & \text{cons$

أخذنا الجذر التربيعي الموجب لأن مجال الدالة العكسية هو س ≤ 9 $c^{-1}(m) = 7 + \sqrt{9 - m}$

(u) مجال د(u) هو مدی د(u) نفسه، أي س ≤ 9

المدى هو مجال د(س) نفسه، أي $\Upsilon \leq c^{-1}(m) \leq V$

(س) هي دالة عكسيّة لـ د-١(س) فقط إذا كانت (1) أ (س) = ٣س + أ أ د(س) هي دالة عكسيّة لـ د-١(س) كل منهما واحدًا إلى واحد.

$$c^{-1}(m) = \frac{0m - 1}{m} \quad m \in 3, \quad 0 < m \leq 7$$

$$c = \frac{0m - 1}{m} \quad m \in 3, \quad 0 < m \leq 7$$

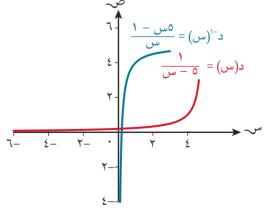
$$1 = (\omega - \delta)$$

$$\frac{1}{\omega - 0} = \omega$$

لتكون د(س) موجودة يجب أن تكون واح

مدی د-'(س) =
$$\frac{8m - 1}{m}$$
 هو د-'(س) $\leq \frac{18}{7}$ (پنتج ذلك من تعويض قيم المجال

ب مجال د(س) =
$$\frac{1}{6 - w}$$
 یجب أن یکون $w \leq \frac{1}{7}$



لدالة واحد إلى واحد تكون د-١(س) انعكاسًا L د(س) حول المستقيم ص = س.

$$c(w) = \gamma_{w} + i$$

$$c(w) = \gamma_{w$$

عوّض عن ب في معادلة (١) لتحصل على:

17 =
$$\sqrt{100}$$
 $\sqrt{100}$ $\sqrt{100$

$$\frac{\Upsilon}{\Sigma - \Sigma} = \frac{1}{2}$$

$$\Upsilon = (\xi - \omega \Upsilon)$$

$$\frac{3m + \frac{3m}{4}}{7m} = \frac{3m}{4}$$

$$\frac{\Upsilon + \omega \Sigma}{\Gamma} = (\omega)^{1-1}$$

$$w = w + 1$$

$$w = w + 1$$

$$w = w + 1$$

$$w = (w) = w + 1$$

$$w = (w) = c^{-1}(w)$$

$$w = (w + 1)(w - 1)$$

$$w = w^{7} - w$$

$$w = w - 1 = w$$

 $c^{-1}(uu) = \frac{\gamma_u u - 1}{uu}$

 $c(m) \neq c^{-1}(m)$ لذا فهی لیست عکسیّة لنفسها

$$\mathbf{v} \cdot \mathbf{c}(\mathbf{w}) = \frac{\mathbf{v} \cdot \mathbf{w} + \mathbf{v}}{\mathbf{v} - \mathbf{w}}$$

$$\mathbf{w} = \frac{\mathbf{v} \cdot \mathbf{w} + \mathbf{v}}{\mathbf{v} - \mathbf{w}}$$

$$\mathbf{w} = \frac{\mathbf{v} \cdot \mathbf{w} + \mathbf{v}}{\mathbf{v} - \mathbf{w}}$$

$$\mathbf{w} \cdot \mathbf{w} = \mathbf{v} \cdot \mathbf{w}$$

$$\mathbf{w} \cdot \mathbf{w} \cdot \mathbf{w} = \mathbf{v} \cdot \mathbf{w}$$

 $\frac{w + 1}{r} = \frac{3w + 7}{rw}$ 7w(w + 1) = 7(3w + 7) 7w' + 7w = 71w + 9 7w' - 1w - 9 = 0 1 = 7, y = -01, z = -9 z = 20 z = 3 z = 6 y = -3 z = 0 y = -3 z = 0

 $\cdot \leq 1$ ۷۲ خدران حقیقیان. نامعادلة جذران حقیقیان. نامعادلة جذران حقیقیان. (۱۳ \rightarrow ۲ \rightarrow ۳، س و ع، لکل آ د: س \rightarrow (۲س \rightarrow ۲) \rightarrow ۳، س و ع، لکل

(1) $c: w \mapsto (7w - 1)^7 - 7, w \notin 9, \text{ L2D}$ $1 \leqslant w \leqslant 7$ $0 \leqslant (7w - 1)^7 - 7$ $w = (7w - 1)^7 - 7$ $w = (7w - 1)^7 - 7$ $(7w - 1)^7 = w + 7$ $7w - 1 = 7\sqrt{w + 7}$ $w = \frac{1 + 7\sqrt{w + 7}}{7}$ $c^{-1}(w) = \frac{1 + 7\sqrt{w + 7}}{7}$ $1e^{-1}(w) = \frac{1 + 7\sqrt{w + 7}}{7}$

ب مجال د $^{-1}$ (س) مدی د(س) نفسه. ومدی د(س) هو $-7 \le c(m) \le 177$ (من تعویض قیم المجال* في c(m)). مجال c(m) هو $-7 \le m \le 177$

$$\frac{1}{1-w} = (w)^{2} = \frac{1}{1-w} = \frac{1}{1$$

$$w - Y w = Y - w + 1$$

$$w - Y - w = Y w + 1$$

$$w - (w - Y) = Y w + 1$$

$$w - \frac{Y w + 1}{Y - w}$$

$$w - \frac{Y w + 1}{Y -$$

 $\varepsilon(\omega) = \frac{\gamma_{\omega} + 0}{2\omega_{\omega} - \gamma}$ $\frac{0 + \omega^{T}}{T - \omega^{2}} = \omega$ $\frac{0 + \omega^{T}}{T - \omega^{2}} = \omega$ $\frac{0 + \omega^{T}}{T - \omega^{2}} = \omega$ $\omega + \omega = (T - \omega^{2})$ ٤س ص - ٣ س = ٣ص + ٥ ٤س ص - ٣ ص = ٣سر+ ٥

 $\alpha + \infty = (\Upsilon - \Upsilon) = \gamma$ س α

 $\frac{\delta + \omega^{*}}{\delta} = \frac{\delta}{\delta}$

 $L^{-1}(u\omega) = \frac{7u\omega + 6}{5u\omega - 7}$

 $(w) = c^{-1}(w)$ ، لذا تكون (w) عكسية لنفسها.

 $(u \circ a_{-})(u) = c(2 - 7u)$

 $(c \circ a_{-})(\omega) = \Upsilon(3 - \gamma_{\omega}) - \delta$

 $(c \circ a_{-})(m) = V - \Gamma_{m}$

أوجد (د ∘ هـ)⁻(س)

 $ص = V - \Gamma$ س

 $\omega V = V - \Gamma \omega$

 $\frac{V}{2} = \frac{V}{2}$

 $\frac{\nabla}{\Delta} = \frac{1}{2} \left(\frac{1}{2} - \frac{1}{2} \right)$

ب ۱) أوجد د^{-۱}(س) ص = ٣س - ٥

س = ٣ص - ٥ ٣ص = س + ٥

 $\frac{0+\omega}{\omega}=\frac{0}{\omega}$

 $c^{-\prime}(\omega) = \frac{\omega + 0}{\pi}$

أوجد هـ-١(س)

ص = ٤ - ٢س

س = ٤ - ٢ص

٢ص = ٤ - س

ص = ٤ - س

هـــــــــــ (س) = _____

 $\left(L^{-1} \circ \mathbb{A}^{-1}\right)\left(\omega_{0}\right) = L^{-1}\left(\frac{3-\omega_{0}}{2}\right)$

اضرب البسط والمقام في ٢ لتحصل على:

اضرب $-(w)^{-1}(w) - (c^{-1} \circ a^{-1})(w) -$

اضرب البسط والمقام في ٣ لتحصل على:

 $\left(\triangle_{-}^{-1}\circ L^{-1}\right)(\omega)=\frac{\gamma_{1}-(\omega_{1}+\delta)}{\Gamma}$

 $(a_{-}^{-1} \circ c^{-1})(\omega) = \frac{V - \omega}{\Gamma}$

 $(c \circ a_{-})^{-1}(w_{-}) = (a_{-}^{-1} \circ c_{-}^{-1})(w_{-})$

هذه النتيجة صحيحة دائمًا بافتراض أن الدوال العكسية وتركيب الدوال متحقق دائمًا ولا توجد مشاكل مع المجال والمدى.