توقَّع المتغير العشوائي Expectation of a Random Variable

إيجاد التوقُّع والتباين لمتغير عشوائي في تجربة عشوائية : فكرة الدرس

لبيانات مُمثَّلة في جداول (﴿ ﴿)تعلَّمْتُ سابقًا إيجاد الوسط الحسابي: معلومات سابقة تكراراتها تكرارية ؛ بقسمة مجموع حاصل ضرب القِيَم في تكراراتها

: باستعمال الصيغة الآتية (\diamondsuit) على مجموع التكرارات $(\diamondsuit . \diamondsuit)$:

وبالمثل، يُمكِن إيجاد الوسط الحسابي لتوزيع احتمالي؛ لأنَّ احتمالات قِيَم المتغير العشوائي قسمة كل تكرار على مجموع تُمثِّل تكرارات لتلك القِيَم (تكرارات نسبية ؛ نظرًا إلى X التكرارات). ولأنَّ مجموع احتمالات قِيَم المتغير العشوائي (التكرارات) هو X فإنَّ الوسط الحسابي هو

، ويُرمَز إليه X للمتغير العشوائي (expectation) في ما يُعرَف باسم التوقُّع $\mathbf{E}(\mathbf{x})$.

مفهوم أساسي (التوقع)

في توزيع احتمالي لتجربة عشوائية يساوي مجموع X التوقُّع للمتغير العشوائي: بالكلمات في توزيع احتمال تلك القيمة X حواصل ضرب كل قيمة للمتغير

بالرموز:
$$\diamondsuit(\diamondsuit) = \sum \diamondsuit \cdot \diamondsuit(\diamondsuit)$$

: مثال [

في مسح عشوائي شمل 100 أسرة لمعرفة عدد الأطفال لدى كل أسرة الذين تقل أعمار هم

4	3	2	1	0	(x) عدد الأطفال
2	14	30	33	21	(f التكرار) عدد الأسر

:عن 3 سنوات ، كانت نتيجة المسح كما في الجدول الآتي

: يُمثِّل عدد الأطفال الذين تقل أعمار هم عن 3 سنوات X بافتراض أنَّ المتغير العشوائي (1 لمتغير العشوائي (1

اجد التوقع للمتغير العشوائي (2)
الحل : الحل

1) أُنشِئ جدول التوزيع الاحتمالي للمتغير العشوائي (1

4	3	2	1	0	(x)
0.02	0.14	0.30	0.33	0.21	P(x)

:أقسم كل تكرار على مجموع التكرارات، ثم أُنشِئ جدولًا للتوزيع الاحتمالي

$$\diamondsuit(\diamondsuit) = \sum \diamondsuit \cdot \diamondsuit(\diamondsuit)$$

$$= 0 \times 0.21 + 1 \times 0.33 + 2 \times 0.30 + 3 \times 0.14 + 4 \times 0.02$$

بالتبسيط

= 1.43

x. أجد التوقُّع للمتغير العشوائي (2

، فإنَّه يُمكن تحديد قِيَم احتمالات مجهولة في X للمتغير العشوائي E(x) إذا عُلِمت قيمة التوقُّع . التوزيع الاحتمالي؛ بتكوين نظام من المعادلات الخطية، ثم حلِّه بطريقة الحذف والتعويض

2 مثال

$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	إذ					
10	·, J	4	3	2	1	(x)
. 0.1 0.0 0.2 0.2	الت الت	0.3	b	0.2	а	P(x)

:كما في الجدول الآتي X ع الاحتمالي للمتغير العشوائي

و كان
$$E(x) = 2.7$$
و كان : ($P(x = 1)$ و كان) و $P(x = 3)$

: الحل

• و مقياس لتشتُّت قِيَم المتغير عن X للمتغير العشوائي (Variance) التباين E(x) و يمكِن إيجاده باستعمال الصيغة الآتية E(x) و وسطها الحسابي

في توزيع احتمالي لتجربة عشوائية يساوي مجموع X التباين للمتغير العشوائي: بالكلمات في احتمال كل قيمة مطروحًا منه مربع التوقُّع X حواصل ضرب مربعات قِيَم المتغير X للمتغير

بالرموز :
$$•2 = (\sum •2. •(•)) - (•(•))2$$

: مثال 3

يُبيِّن الجدول الآتي التوزيع الاحتمالي المتغير العشوائي X

3	2	1	0	(x)
0.2	0.35	0.27	0.18	P(x)

ا أجد التوقُّع E(x).

2) أجد التباين **2.** : الحل